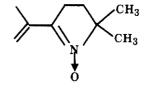
CORRECTIONS

Richard P. N. Veregin,* Michael K. Georges, Peter M. Kazmaier, and Gordon K. Hamer: Free Radical Polymerizations for Narrow Polydispersity Resins: Electron Spin Resonance Studies of the Kinetics and Mechanism. Volume 26, Number 20, September 27, 1993, pp 5316-5320.

Corrected versions of eqs 15, 17, and 18 from p 5318 are shown:


$$dP/dt = -k_{I}PT + k_{I}RM$$
 (15)

$$dP/dt = k_{PR}I_0T + 2k_DI_0 - k_LPT$$
 (17)

$$\frac{dP}{dT} = \frac{k_{\rm PR}I_0 + 2k_{\rm D}(I_0/T) - k_{\rm L}P}{-k_{\rm PR}I_0 - k_{\rm L}P} \tag{18}$$

Line 2 of the first paragraph, and line 1 of the second paragraph on p 5319, should read ...the magnitude of $(T-T_0)$...

Structure 1 on p 5317 should be as shown:

1

F. A. Adamsky and E. J. Beckman*: Inverse Emulsion Polymerization of Acrylamide in Supercritical Carbon Dioxide. Volume 27, Number 1, January 3, 1994, pp 312–314.

Here is the corrected Table 1:

Table 1. Results of Acrylamide Polymerization in Carbon Dioxide at 60 °C

polymer property	surfactant concn		
	0%	1%	2%
intrinsic viscosity (dL/g)	11.60	12.28	9.15
$M_{\rm v} \times 10^{-6}$ a	6.61	7.09	4.92
Huggins constant	0.310	0.505	0.479
percent yield (wt %)	91.4	99.8	99.8

^a Reference 21: Estimated M_v from empirical relation eq 3.